top of page
  • LinkedIn
  • X

Latest publications

Spectral signature of high-order photon processes enhanced by Cooper-pair pairing

Photons do not interact with each other in free space. In the quantum optical domain, they are typically brought into interaction by coupling them to atoms. Recent advances have realized two- and three-photon interactions mediated by a dense gas of Rydberg atoms, demonstrating photon dimers and trimers, and photonic vortices. Reaching processes of higher order would find applications in multi-photon quantum logic and the study of many-body photon states, but has remained out of reach since it requires inducing even stronger interactions between photons.

Capture d’écran 2025-10-20 143011.png
41467_2025_62283_Fig1_HTML.webp

The carbon nanotube gatemon qubit

Nature Communications volume 16, Article number: 7197 (2025)

a Schematic of the hybrid cQED architecture containing a carbon nanotube Josephson junction. The nanotube is transferred onto two Nb–Au electrodes (gold) to form a Josephson junction of energy EJ that can be tuned with gate voltage Vg. Together with the shunt capacitor of energy EC it implements a gatemon qubit (orange box), which is capacitively coupled to the readout resonator (light blue). b False-colored micrograph of the nanotube gatemon. The central charge island (purple), which implements the shunt capacitor, is coupled to a λ/2 resonator and connected to the ground plane through the carbon nanotube Josephson junction. The carbon nanotube (not visible) is covered by hBN (green) and a top gate (dark blue). c Layout of the full chip with two independent hybrid cQED architectures. Device A corresponds to the bottom one, its resonator being highlighted in blue. Bonding pad on the bottom of the chip is used for top gate control.

Double_Squid_Axel.png

Nature Communications 16, 1010 (2025) Gate and flux tunable sin(2φ) Josephson element in proximitized junctions Axel Leblanc, Chotivut Tangchingchai, Zahra Sadre Momtaz, Elyjah Kyooka, Jean-Michel Hartmann, Frédéric Gustavo, Jean-Luc Thomassin, Boris Brun, Vivien Schmitt, Simon Zihlmann, Romain Maurand, Étienne Dumur, Silvano De Franceschi and François Lefloch

Nano Letter December 17, 2024 Gatemon Qubit on a Germanium Quantum-Well Heterostructure Elyjah Kiyooka Chotivut Tangchingchai Leo Noirot Axel Leblanc, Boris Brun, Simon Zihlmann, Romain Maurand, Vivien Schmitt, Étienne Dumur, Jean-Michel Hartmann, François Lefloch and Silvano De Franceschi

Capture d’écran 2024-10-22 103405.png

Using Bifluxon Tunneling to Protect the Fluxonium Qubit
Waël Ardati, Sébastien Léger, Shelender Kumar, Vishnu N. Suresh, Dorian Nicolas, Cyril Mori, Francesca D’Esposito, Tereza Vakhtel, Olivier Buisson, Quentin Ficheux, Nicolas Roch
Phys. Rev. X 14, 041014 – Published 16 October 2024

A new approach to encoding information in a fluxonium qubit extends its relaxation and coherence times, making this platform a promising candidate for future quantum computing applications. The fluxonium quantum bit, or qubit, consists of a superconducting loop interrupted by a Josephson junction, a thin layer of nonsuperconducting material sandwiched between two superconducting layers. Like all qubits, fluxoniums are easily affected by noise and decoherence, which hampers their ability to store information. Even though this qubit was introduced 10 years ago, we have discovered a new way to operate it that can potentially extend its lifetime. The main idea is to encode the two logical states, 0 and 1, using two different parities of the magnetic flux quanta, or fluxons, that enter the superconducting loop. The ground state corresponds to zero fluxon in the loop, while the first excited states are encoded with an odd fluxon number. As the wave functions of 0 and 1 display minimal overlap, our fluxonium has better protection from relaxation compared to a standard fluxonium with the same 0-1 transition frequency while keeping the same order of protection from dephasing. This encoding of quantum information is enabled by a very large inductance, or superinductance, of 1 μH over a few hundred microns. Despite the challenges in fabricating this circuit, our experiments show impressive stability, with qubits exhibiting long relaxation and coherence times (in the 100-microsecond range). This resilience makes our fluxonium qubit a promising candidate for future quantum computing applications. Additionally, this work demonstrates that large superinductances are a powerful tool in developing robust superconducting qubits, expanding their potential for diverse quantum computing applications.

Marquet 2024.gif

Harnessing two-photon dissipation for enhanced quantum measurement and control

A. Marquet, S. Dupouy, U. Réglade, A. Essig, J. Cohen, E. Albertinale, A. Bienfait, T. Peronnin,

S. Jezouin, R. Lescanne, and B. Huard

Phys. Rev. Applied 22, 034053 – Published 23 September 2024

From nonreciprocal to charge-4e supercurrents in Ge-based Josephson devices

with tunable harmonic content

Axel Leblanc, Chotivut Tangchingchai, Zahra Sadre Momtaz, Elyjah Kiyooka, Jean-Michel Hartmann,
Gonzalo Troncoso Fernandez-Bada, Zoltán Scherübl, Boris Brun, Vivien Schmitt, Simon Zihlmann, Romain Maurand,
Étienne Dumur, Silvano De Franceschi, and François Lefloch
Phys. Rev. Research 6, 033281 – Published 11 September 2024

e107_1.png

S. Messelot et al.

Direct Measurement of a sin⁡(2⁢𝜑) Current Phase Relation

in a Graphene Superconducting Quantum Interference Device

Simon Messelot, Nicolas Aparicio, Elie de Seze, Eric Eyraud, Johann Coraux, Kenji Watanabe, Takashi Taniguchi, and Julien Renard
Phys. Rev. Lett. 133, 106001 – Published 5 September 2024
See also the synopsis: A New Nonlinearity for Superconducting Circuits

H. Chakraborti, C. Gorini, A. Knothe, M.-H. Liu, P. Makk, F. D. Parmentier, D. Perconte, K. Richter, P. Roulleau, B. Sacépé, C. Schönenberger and W. Yang,  J. Phys.: Condens. Matter 36 393001 (2024)

Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s
A. Marquet, A. Essig, J. Cohen, N. Cottet, A. Murani, E. Albertinale, S. Dupouy, A. Bienfait, T. Peronnin, S. Jezouin, R. Lescanne, and B. Huard,
Phys. Rev. X 14, 021019 (2024)

Near power-law temperature dependence of the superfluid stiffness

in strongly disordered superconductors

Anton V. Khvalyuk, Thibault Charpentier, Nicolas Roch, Benjamin Sacépé, and Mikhail V. Feigel'man
Phys. Rev. B 109, 144501 (2024)

Cyclically Operated Single Microwave Photon Counter with 10−22 W/Hz ̅ ̅ ̅√ sensitivity
L. Balembois, J. Travesedo, L. Pallegoix, A. May, E. Billaud, M. Villiers, D. Estève, D.Vion, P. Bertet, and E. Flurin,
Phys. Rev. Applied 21, 014043 (2024)

Evidence for chiral supercurrent in quantum Hall Josephson junctions

Schematic JJ.png

Josephson diode effect in Andreev molecules
J.-D. Pillet, S. Annabi, A. Peugeot, H. Riechert, E. Arrighi, J. Griesmar, and L. Bretheau

Phys. Rev. Research 5, 033199 (2023)

One Hundred Second Bit-Flip Time in a Two-Photon Dissipative Oscillator

C. Berdou, A. Murani, U. Réglade, W.C. Smith, M. Villiers, J. Palomo, M. Rosticher, A. Denis, P. Morfin, M. Delbecq, T. Kontos, N. Pankratova, F. Rautschke, T. Peronnin, L.-A. Sellem, P. Rouchon, A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, S. Jezouin, R. Lescanne, and Z. Leghtas,
PRX Quantum 4, 020350 (2023)

 

Stability and decoherence rates of a GKP qubit protected by dissipation
L. A. Sellem, R. Robin, P. Campagne-Ibarcq, and P. Rouchon,
http://www.ifac2023.org/

Single-electron spin resonance detection by microwave photon counting

One hundred second bit-flip time in a two-photon dissipative oscillator

C. Berdou, A. Murani, U. Reglade, W. C. Smith, M. Villiers, J. Palomo, M. Rosticher, A. Denis, P. Morfin, M. Delbecq, T. Kontos, N. Pankratova, F. Rautschke, T. Peronnin, L.-A. Sellem, P. Rouchon, A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, S. Jezouin, R. Lescanne, Z. Leghtas, ,

PRX Quantum, 2023, 4 (2), pp.020350

Long-lived Andreev states as evidence for protected hinge modes in a bismuth nanoring Josephson junction

A. Bernard, Y. Peng, A. Kasumov, R. Deblock, M. Ferrier, F. Fortuna, V. T. Volkov, Y. A. Kasumov , Y. Oreg, F. von Oppen, H. Bouchiat, S. Guéron,

Nat. Phys. 19, 358–364 (2023) 

Robust suppression of noise propagation in GKP error-correction

C. Siegele and P. Campagne-Ibarcq,

Phys. Rev. A 108, 042427 (2023)

Loss mechanisms in TiN high impedance superconducting microwave circuits,

K. Rafsanjani Amin, C. Ladner, G. Jourdan, S. Hentz, N. Roch, J. Renard,

Appl. Phys. Lett. 120, 164001 (2022)

Magnifying quantum phase fluctuations with Cooper-pair pairing,

W.C. Smith, M. Villiers, A. Marquet, J. Palomo, M.R. Delbecq, T. Kontos, P. Campagne-Ibarcq, B. Doucot and Z. Leghtas,

Phys. Rev. X 12, 021002 (2022)

A gate-tunable graphene Josephson parametric amplifier,

G. Butseraen, A. Ranadive, N. Aparicio, K. Rafsanjani Amin, A. Juyal, M. Esposito, K. Watanabe, T. Taniguchi, N. Roch, F. Lefloch, J. Renard,

Nat. Nanotechnol. 17, 1153–1158 (2022)

CONTACT

Nicolas Roch

Institut Néel CNRS/UGA UPR2940
25 rue des Martyrs BP 166
38042 Grenoble cedex 9

France

You can also contact us by using this form:

Thanks for submitting!

JOIN THE MAILING LIST

Thanks for subscribing!

© 2022 by RobustSuperQ.fr Proudly created with Wix.com

bottom of page